به دنبال دردسر نباش. - اچ جکسون براون (کتاب نکته‌های کوچک زندگی)
ریاضی, آموزش ریاضی, آموزش - کارشناسی

توسیع انتگرال

سوال:  انتگرال زیر را در نظر بگیرید \(\begin{equation} I(x)=\int^{2}_{0} (1+t) \exp\left(x\cos\left(\frac{\pi(t-1)}{2}\right)\right) dt \end{equation}\) نشان...

سوال: 

انتگرال زیر را در نظر بگیرید

\(\begin{equation} I(x)=\int^{2}_{0} (1+t) \exp\left(x\cos\left(\frac{\pi(t-1)}{2}\right)\right) dt \end{equation}\)

نشان دهید 

\(\begin{equation} I(x)= 4+ \frac{8}{\pi}x +O(x^{2}) \end{equation}\)

که در آن \(x\rightarrow0\)

من سعی در حل این انتگرال نموده ولی با جملات بسیار بزرگ و ترسناک مواجه می شوم لطفا کمکم کنید!

جواب: 

ابتدا، تغییر متغیر \(t\leftarrow2-t\) نشان می دهد \(I(x)=\int_0^2(3-t)e^{x\,\cos(\pi(t-1)/2)}dt\) و خواهیم داشت

\(\eqalign{I(x)&=2\int_0^2\exp\left(x\cos\frac{\pi(t-1)}{2}\right)dt\cr &=2\sum_{n=0}^\infty\frac{x^n}{n!}\int_0^2\cos^n\left(\frac{\pi(t-1)}{2}\right)dt\cr &=\frac{8}{\pi}\sum_{n=0}^\infty\frac{x^n}{n!}\int_0^{\pi/2}\cos^nu du\cr &= \frac{8}{\pi}\sum_{n=0}^\infty\frac{x^n}{n!}W_n }\)

که \(W_n=\int_0^{\pi/2}\cos^nu du\) انتگرال شناخته شده ویل می باشد. درحالت خاص \(W_0=\frac{\pi}{2}\) و \(W_1 =1\) خواهیم داشت 

\(I(x)=4+\frac{8}{\pi}x+{\cal O}(x^2)\)

منبع: http://math.stackexchange.com/


این مقاله در سایت علمی رایشمند منتشر شده است. خوشحال می‌شویم اگر دیدگاه و نظر خود را درباره این موضوع با ما و دیگر خوانندگان در میان بگذارید.

شما در پاسخ به

نظر شما اضافه شد، اما ابتدا باید تایید شود.

نظر خود را برای ما بنویسید
لطفا نام خود را وارد کنید
لطفا آدرس ایمیل خود را وارد کنید لطفا آدرس ایمیل معتبر وارد کنید
لطفا یک نظری بنویسید
ثبت و ارسال