سوالی در مورد انتگرال مدیر ارشد رایشمند / جمعه, 29 فروردین,1393 / دستهها: ریاضی, آموزش ریاضی, آموزش - کارشناسی سوال: اگر f(x) و g(x) در [a,b] انتگرال پذیر باشد. آیا می توانیم بگوییم f(x)g(x) در [a,b] انتگرال پذیر است. منظور از انتگرال انتگرال ریمان است. جواب: توجه داشته باشید که حاصل ضرب توابع کراندار، کراندار است؛ لذا اگر f و g توابع انتگرال پذیر ریمان باشند، fg نیز کراندار است. بعلاوه اگر f و g در x پیوسته باشند، fg نیز چنین خواهد بود. بنابراین شمول زیر را داریم: {x:fg is not continuous at x}⊆{x:f not continuous}∪{x:g not continuous} چون f انتگرال پذیر ریمان است، مجموعه ناپیوستگی آن دارای اندازه لبگ صفر است. (یعنی می تواند عدد باشد). حکم مشابهی نیز برای g برقرار است لذا اشتراک از اندازه صفر است. بنابراین fg کراندار است و مجموعه ناپیوستگی آن به اندازه کافی کوچک است، لذا fg انتگرال پذیر ریمان است. آموزش ساعت به کودکان کارشناسی ارشد ریاضیات مالی پرینت 5835 رتبه بندی این مطلب: 2.9 کلمات کلیدی: انتگرال انتگرال پذیر انتگرال ریمان مدیر ارشد رایشمندمدیر ارشد رایشمند سایر نوشته ها توسط مدیر ارشد رایشمند تماس با نویسنده مطالب مرتبط توسیع انتگرال ریاضیات مهندسی راه حل های پیوسته و انتگرال پذیر برای مسئله غیرخطی کوشی از مراتب کسری و شرایط غیرلوکال چگونه این انتگرال معین را حل کنم اثبات تساوی دو انتگرال نوشتن یک نظر نام: لطفا نام خود را وارد نمایید. ایمیل: لطفا یک آدرس ایمیل وارد نمایید لطفا یک آدرس ایمیل معتبر وارد نمایید نظر: لطفا یک نظر وارد نمایید موافقم این فرم نام، ایمیل، آدرس IP و محتوای شما را جمعآوری میکند تا بتوانیم نظرات درج شده در وبسایت را پیگیری کنیم. برای اطلاعات بیشتر خطمشی رازداری و شرایط استفاده< /a> که در آن اطلاعات بیشتری در مورد مکان، چگونگی و چرایی ذخیره داده های شما دریافت خواهید کرد. شما باید این قوانین را بخوانید و قبول کنید. افزودن نظر