Processing math: 100%

سخنی از بزرگان...

سوالی در مورد انتگرال

سوال: اگر f(x) و g(x) در [a,b] انتگرال پذیر باشد. آیا می توانیم بگوییم f(x)g(x) در [a,b] انتگرال پذیر است. منظور از انتگرال انتگرال ریمان است.

جواب: توجه داشته باشید که حاصل ضرب توابع کراندار، کراندار است؛ لذا اگر f و g توابع انتگرال پذیر ریمان باشند، fg نیز کراندار است. بعلاوه اگر f و g در x پیوسته باشند، fg نیز چنین خواهد بود. بنابراین شمول زیر را داریم: 

{x:fg is not continuous at x}{x:f not continuous}{x:g not continuous}

چون f انتگرال پذیر ریمان است، مجموعه ناپیوستگی آن دارای اندازه لبگ صفر است. (یعنی می تواند عدد باشد). حکم مشابهی نیز برای g برقرار است لذا اشتراک از اندازه صفر است. 

بنابراین fg کراندار است و مجموعه ناپیوستگی آن به اندازه کافی کوچک است، لذا fg انتگرال پذیر ریمان است. 

پرینت
5837 رتبه بندی این مطلب:
2.9

مدیر ارشد رایشمندمدیر ارشد رایشمند

سایر نوشته ها توسط مدیر ارشد رایشمند
تماس با نویسنده

نوشتن یک نظر

این فرم نام، ایمیل، آدرس IP و محتوای شما را جمع‌آوری می‌کند تا بتوانیم نظرات درج شده در وب‌سایت را پیگیری کنیم. برای اطلاعات بیشتر خط‌مشی رازداری و شرایط استفاده< /a> که در آن اطلاعات بیشتری در مورد مکان، چگونگی و چرایی ذخیره داده های شما دریافت خواهید کرد.
افزودن نظر

ارتباط با نویسنده

x