اثبات تساوی دو انتگرال مدیر ارشد رایشمند / جمعه, 29 فروردین,1393 / دستهها: ریاضی, آموزش ریاضی, آموزش - کارشناسی سوال: در مقاله ای مطالعه می کردم که نوشته بود با یک تغییر متغیر خواهیم داشت: \(\int_{0}^{\infty} \frac{dx}{1 + x^2} = 2 \int_0^1 \frac{dx}{1 + x^2}\) من سعی کردم این مسئله را با تغییر متغیر \(t = 1 + \frac{1}{x}\) حل کنم ولی به مشکل خوردم، مخصوصا با این قضیه مشکل پیدا کردم که کران پایین صفر نمی شود. پاسخ: با جایگزاری \(u=\frac{1}{x}\) خواهیم داشت \(\int_1^\infty \frac{dx}{1+x^2} = \int_0^1 \frac{u^{-2}}{1+u^{-2}}du=\int_0^1 \frac{du}{1+u^2}\) که نتیجه می دهد: \(\int_0^\infty \frac{dx}{1+x^2} = \int_0^1 \frac{dx}{1+x^2} + \int_1^\infty \frac{dx}{1+x^2} = 2\int_0^1 \frac{dx}{1+x^2}\) نوار موبیوس و خواص آن اصل پنجم اقلیدس پرینت 5386 رتبه بندی این مطلب: 2.7 کلمات کلیدی: انتگرال تغییر متغیر حل انتگرال مدیر ارشد رایشمندمدیر ارشد رایشمند سایر نوشته ها توسط مدیر ارشد رایشمند تماس با نویسنده مطالب مرتبط چگونه این انتگرال معین را حل کنم توسیع انتگرال ریاضیات مهندسی سوالی در مورد انتگرال حساب دیفرانسیل و انتگرال 2 نوشتن یک نظر نام: لطفا نام خود را وارد نمایید. ایمیل: لطفا یک آدرس ایمیل وارد نمایید لطفا یک آدرس ایمیل معتبر وارد نمایید نظر: لطفا یک نظر وارد نمایید موافقم این فرم نام، ایمیل، آدرس IP و محتوای شما را جمعآوری میکند تا بتوانیم نظرات درج شده در وبسایت را پیگیری کنیم. برای اطلاعات بیشتر خطمشی رازداری و شرایط استفاده< /a> که در آن اطلاعات بیشتری در مورد مکان، چگونگی و چرایی ذخیره داده های شما دریافت خواهید کرد. شما باید این قوانین را بخوانید و قبول کنید. افزودن نظر