در این صفحه گروه آموزش را ملاحظه می نمایید. برای مشاهده کلیه مطالب سایت اعم از آموزش ریاضی، اخبار ریاضی، نمونه سوال ریاضی، فرمول های ریاضی، مشاهیر و دانشمندان، رشته های تحصیلی و مطالب دیگر می توانید از لینک زیر استفاده کنید

در صفحه جزئیات مطلب که با کلیک روی لینک زیر راهی آن می شوید می توانید از گروه بندی که در سمت چپ وجود دارد برای دسترسی به کلیه مطالب سایت استفاده کنید

تمام مطالب

جدیدترین آموزش ها

RSS

آموزش

مدیر ارشد سایت

چگونه این انتگرال معین را حل کنم

سوال:

\(\int_0^{2\pi} \frac{dx}{\sin^{4}x + \cos^{4}x}\)

من سعی کردم این انتگرال را در حالتی که نامعین است با جاگذاری \(\sin^{4}x + \cos^{4}x\) بصورت:

\(\sin^{4}x + \cos^{4}x = (\sin^{2}x + \cos^{2}x)^{2} - 2\cdot\sin^{2}x\cdot\cos^{2}x = 1 - \frac{1}{2}\cdot\sin^{2}(2x) = \frac{1 + \cos^{2}(2x)}{2}\)

و با تغییر متغیر \(\tan(2x) = t\) حل نمایم. ولی در حالت معین با مشکلی روبرو می شوم که هر دو کران صفر می شود. لطفا کمکم کنید

پاسخ:

داریم: 

\(\displaystyle\cos^4x+\sin^4x=(\cos^2x+\sin^2x)^2-2\cos^2x\sin^2x=1-2\cos^2x\sin^2x\)

\(\displaystyle=\frac{2-\sin^22x}2=\frac{2(1+\tan^22x)-\tan^22x}{2\sec^22x}=\frac{\tan^22x+2}{2\sec^22x}\)

\(\int\frac{dx}{\cos^4x+\sin^4x}=\int\frac{2\sec^22x}{\tan^22x+2}dx\)

قرار می دهیم: \(\tan2x=u\)،

\(\int\frac{2\sec^22x}{\tan^22x+2}dx=\int\frac{du}{u^2+(\sqrt2)^2}=\frac1{\sqrt2}\arctan\left(\frac u{\sqrt2}\right)+K\)

\(\implies \int\frac{dx}{\cos^4x+\sin^4x}=\frac1{\sqrt2}\arctan\left(\frac{\tan2x}{\sqrt2}\right)+K\ \ \ \ (1)\)

حال \(\displaystyle\tan2x=0\iff 2x=n\pi\iff x=\frac{n\pi}2\) که n یک عدد صحیح است نتیجه می دهد: 

\(\int_0^{2a}f(x)dx=\begin{cases} 2\int_0^af(x)dx &\mbox{if } f(2a-x)=f(x) \\ 0 & \mbox{if } f(2a-x)=-f(x) \end{cases}\)

با جایگذاری \(2a=2\pi\iff a=\pi\) و \(\displaystyle f(x)=\cos^4x+\sin^4x\) داریم: 

\(\displaystyle\cos(2\pi-x)=\cos x,\sin(2\pi-x)=-\sin x\implies f(2\pi-x)=f(x)\)

\(\implies I=\int_0^{2\pi}\frac{dx}{\cos^4x+\sin^4x}=2\int_0^{\pi}\frac{dx}{\cos^4x+\sin^4x}\)

دوباره قرار می دهیم: \(\displaystyle2a=\pi\iff a=\frac\pi2\)

\(\displaystyle\cos(\pi-x)=-\cos x,\sin(\pi-x)=+\sin x\implies f(\pi-x)=f(x)\)

\(\implies I=2\int_0^{\pi}\frac{dx}{\cos^4x+\sin^4x}2=2\cdot2\int_0^{\dfrac\pi2}\frac{dx}{\cos^4x+\sin^4x}\)

نهایتا قرار می دهیم: \(\displaystyle2a=\frac\pi2\iff a=\frac\pi4\)

\(\displaystyle\implies\cos\left(\frac\pi2-x\right)=\sin x,\sin\left(\frac\pi2-x\right)=\cos x\)

\(\displaystyle\implies I=4\cdot2\int_0^{\dfrac\pi4}\frac{dx}{\cos^4x+\sin^4x}\)

با توجه به (1) خواهیم داشت: 

\(\displaystyle I=8\left[\frac1{\sqrt2}\arctan\left(\frac{\tan2x}{\sqrt2}\right)+K\right]_0^{\frac\pi4}=\frac8{\sqrt2}\left(\frac\pi2-0\right)\)

 

 

مطلب قبلی اثبات تساوی دو انتگرال
مطلب بعدی مشکل این اثبات کجاست
چاپ
2624 رتبه بندی این مطلب:
بدون رتبه

مدیر ارشد سایتمدیر ارشد سایت

سایر نوشته ها توسط مدیر ارشد سایت

نوشتن یک نظر

نام:
ایمیل:
نظر:
افزودن نظر