آزمون میان ترم آمار و احتمال 1 رشته مهندسی صنایع مدیر ارشد رایشمند / جمعه, 16 خرداد,1393 / دستهها: ریاضی, آموزش ریاضی, نمونه سوال کارشناسی سوال اول فرض کنید n+1 آوند به شماره های 0 تا n در اختیار داریم، به قسمی که i مین آوند دارای i مهره قرمز و n-i مهره سفید است، \(0< i < n\). یک آوند را به تصادف انتخاب کرده و سپس به تصادف مهره های آن را یکی بعد از دیگری و با جایگذاری خارج می کنیم. اگر m مهره اول همه قرمز باشند احتمال آن که \((m+1)\) مین مهره نیز قرمز باشد چقدر است؟ حل: پیشامدهای زیر را در نظر بگیرید: \(A_i\): پیشامد انتخاب آوند i-ام \(R_m\) یعنی m مهره انتخابی اول همگی قرمز باشند R پیشامدی که می گوید m+1 مین مهره قرمز باشد. با فرض وقوع \(A_i\)، پیشامدهای \(R_m\) و R به طور شرطی مستقل هستند. بنابراین: \(P(R|R_mA_i)=P(R|A_i)=\frac{i}{n} \quad (*)\) بنابر فرمول بیز داریم: \(P(A_i|R_m)=\frac{P(R_m|A_i)P(A_i)}{\sum_{k=0}^n{P(R_m|A_k)P(A_k)}}=\frac{{(i/n)}^m(1/n+1)}{\sum_{k=0}^n{(k/n)}^m{(1/n+1)}}=\frac{{(i/n)}^m}{\sum_{k=0}^n{(k/n)}^m} \quad (**) \) اکنون برای محاسبه \(P(R|R_m)\) از برابری زیر استفاده می کنیم: \(P(R|R_m)=\sum_{i=0}^nP(R|R_mA_i)P(A_i|R_m) \quad (***)\) در نتیجه با جایگذاری \((*)\) و \((**)\) در \((***)\) خواهیم داشت: \(P(R|R_m)=\frac{\sum_{i=0}^n(i/n)^{m+1}}{{\sum_{k=0}^n(k/n)^{m}}}\) اکنون برای محاسبه سری های صورت و مخرج از انتگرال معین کمک می گیریم، از ریاضیات (1) به یاد داریم که: \(\lim _{n \rightarrow \infty}\frac{1}{n}\sum_{i=1}^nf(i/n)=\int _0 ^1 f(x) \text{dx}\) بنابراین: \(\frac{1}{n}\sum_{i=0}^n(i/n)^{m+1}=\int _0 ^1 x^{m+1} \text{dx}=\left. \frac{x^{m+2}}{m+2} \right|_0^1 =\frac{1}{m+2}\) بصورت مشابه: \(\frac{1}{n}\sum_{i=0}^n(k/n)^{m}=\int _0 ^1 x^{m} \text{dx}=\left. \frac{x^{m+1}}{m+1} \right|_0^1 =\frac{1}{m+1}\) در نتیجه جواب نهایی بصورت زیر در می آید: \(P(R|R_m)=\frac{\sum_{i=0}^n(i/n)^{m+1}}{{\sum_{k=0}^n(k/n)^{m}}}=\frac{\frac{1}{m+2}}{\frac{1}{m+1}}=\frac{m+1}{m+2}\) سوال دوم: بیماری هموفیلی یک بیماری ارثی است. اگر مادری به این بیماری مبتلا باشد، آن گاه به احتمال \(1 \over 2\) هر یک از فرزندان پسرش مستقلا این بیماری را به ارث می برند. در غیر این صورت هیچ یک از فرزندان این مادر هموفیلی نمی شوند. خانمی مادر 2 پسر است و پرونده پزشکی خانواده او نشان می دهد که با احتمال \(1 \over 4\) این خانم هموفیلی است. مطلوب است احتمال آن که (الف) اولین پسر فرزند این خانم هموفیلی باشد، (ب) دومین فرزند پسر این خانم هموفیلی باشد، (ج) هیچ یک از فرزندان پسر این خانم هموفیلی نباشند. حل: پیشامدهای زیر را در نظر می گیریم: \(H_2, H_1, H\) به ترتیب از راست به چپ پیشامد اینکه خانم، پسر اول و پسر دوم او هموفیلی باشد. به شرط وقوع \(H\)، \(H_1\) و \(H_2\) به طور شرطی مستقل اند. اما اگر یکی از پسران هموفیلی باشد، در این صورت مادر هموفیلی است و با احتمال \(1 \over 2\) پسر دیگر نیز هموفیلی است. الف- داریم: \(P(H_1)=P(H_1|H)P(H)+P(H_1|H^c)P(H^c)={{1} \over {2}}\times {{1} \over {4}}+0 \times {{3} \over {4}}={{1} \over {8}}\) ب - مشابها: \(P(H_2)={{1} \over {8}}\) ج - داریم: \(P(H_1^cH_2^c)=P(H_1^cH_2^c|H)P(H)+P(H_1^cH_2^c|H^c)P(H^c)\) داریم: \(P(H_1^cH_2^c|H^c)=1\) همچنین: \(P(H_1^cH_2^c|H)=P(H_1^c|H)P(H)+P(H_2^c|H^c)P(H)={{1} \over {2}}\times {{1} \over {2}}={{1} \over {4}}\) در نتیجه: \(P(H_1^cH_2^c)=P(H_1^cH_2^c|H)P(H)+P(H_1^cH_2^c|H^c)P(H^c)={{1} \over {4}}\times {{1} \over {4}}+1\times {{3} \over {4}}={{13} \over {16}}\) موفق باشید، اوج بگ مسابقه دانشجویی نمونه سوالات حل شده امتحانی ریاضیات 2 پرینت 3755 رتبه بندی این مطلب: 3.5 کلمات کلیدی: آمار سوالات جزوه باز نمونه سوال آمار مدیر ارشد رایشمندمدیر ارشد رایشمند سایر نوشته ها توسط مدیر ارشد رایشمند تماس با نویسنده مطالب مرتبط جزوه آمار و احتمال مقدماتی 1 آمار نوشتن یک نظر نام: لطفا نام خود را وارد نمایید. ایمیل: لطفا یک آدرس ایمیل وارد نمایید لطفا یک آدرس ایمیل معتبر وارد نمایید نظر: لطفا یک نظر وارد نمایید موافقم این فرم نام، ایمیل، آدرس IP و محتوای شما را جمعآوری میکند تا بتوانیم نظرات درج شده در وبسایت را پیگیری کنیم. برای اطلاعات بیشتر خطمشی رازداری و شرایط استفاده< /a> که در آن اطلاعات بیشتری در مورد مکان، چگونگی و چرایی ذخیره داده های شما دریافت خواهید کرد. شما باید این قوانین را بخوانید و قبول کنید. افزودن نظر