سخنی از بزرگان...

فرمول های خط در دوبعدی

مدیر ارشد رایشمند

حالت های خط:

فرمول خط با توجه به شیب خط و عرض از مبدا

\(y = mx+b\)

فرمول خط با استفاده از دو نقطه: 

\(y - y_1 =\frac{y_2-y_1}{x_2 - x_1} (x - x_1)\)

فرمول خط با استفاده از شیب خط و یک نقطه: 

\(y - y_1 = m(x - x_1)\)

فرمول خط با استفاده از عرض از مبدا

\(\frac{x}{a} + \frac{y}{b} = 1~,~(a,b \ne 0)\)

معادله خط بصورت نرمال: 

\(x\cdot \cos\Theta + y\cdot \sin\Theta = p\)

معادله خط بصورت پارامتریک:

\(\begin{aligned} x &= x_1 + t\cdot \cos\alpha \\ y &= y_1 + t\cdot \sin\alpha \\ \end{aligned}\)

معادله خط با استفاده از دو نقطه و درجهت یک خط:

\(\frac{x - x_1}{A} = \frac{y - y_1}{B}\)

که در آن \((A,B)\) جهت خط را مشخص می کند و نقطه ی \(P_1(x_1, y_1)\) روی خط قرار دارد. 

 

معادله کلی خط: 

\(Ax + By + C = 0~,~(A\ne 0 ~\text{or}~B \ne 0)\)

فاصله مابین خط \(A\,x + B\,y + C = 0\) و نقطه ی \(P_1(x_1, y_1)\) از فرمول زیر بدست می آید: 

\(d = \frac{|A\,x_1 + B\,y_1 + C|}{\sqrt{A^2 + B^2}}\)

انطباق خطوط

سه خط \(\begin{aligned} A_1x + B_1y + C_1 &= 0 \\ A_2x + B_2y + C_2 &= 0 \\ A_3x + B_3y + C_3 &= 0 \end{aligned}\) بر هم منطبق اند اگر و تنها اگر \(\begin{vmatrix} A_1 & B_1 & C_1 \\ A_2 & B_2 & C_2 \\ A_3 & B_3 & C_3 \\ \end{vmatrix} = 0\)

پاره خط:

پاره خط \(P_1P_2\) را بصورت زیر می توان پارامتری کرد:

\(\begin{aligned} x &= x_1 + (x_2 - x_1)t \\ y &= y_1 + (y_2 - y_1)t \\ & 0 \leq t \leq 1 \end{aligned}\)

دو پاره خط  و  متقاطع هستند اگر و تنها اگر اعداد \(s = \frac{ \begin{vmatrix} x_2 - x_1 & y_2 - y_1 \\ x_3 - x_1 & y_3 - y_1 \end{vmatrix}} { \begin{vmatrix} x_2 - x_1 & y_2 - y_1 \\ x_3 - x_4 & y_3 - y_4 \end{vmatrix}} ~~ \text{and} ~~ t = \frac{ \begin{vmatrix} x_3 - x_1 & y_3 - y_1 \\ x_3 - x_4 & y_3 - y_4 \end{vmatrix}} { \begin{vmatrix} x_2 - x_1 & y_2 - y_1 \\ x_3 - x_4 & y_3 - y_4 \end{vmatrix}}\)
در شرایط زیر صدق کنند: \(0 \leq s \leq 1\) و \(0 \leq t \leq 1\)


این مطلب چقدر برایتان مفید بود. اگر فرمول های دیگری از قلم رایشمند افتاده است به ما اطلاع رسانی نمایید. 

پرینت
6377 رتبه بندی این مطلب:
3.4

مدیر ارشد رایشمندمدیر ارشد رایشمند

سایر نوشته ها توسط مدیر ارشد رایشمند
تماس با نویسنده

نوشتن یک نظر

این فرم نام، ایمیل، آدرس IP و محتوای شما را جمع‌آوری می‌کند تا بتوانیم نظرات درج شده در وب‌سایت را پیگیری کنیم. برای اطلاعات بیشتر خط‌مشی رازداری و شرایط استفاده< /a> که در آن اطلاعات بیشتری در مورد مکان، چگونگی و چرایی ذخیره داده های شما دریافت خواهید کرد.
افزودن نظر

ارتباط با نویسنده

x