تا نابودی جهان هستی چقدر زمان باقی است؟

ریاضی, آموزش ریاضی, آموزش - کارشناسی, آموزش - متوسطه, آموزش مباحث متفرقه ریاضی

اصل پنجم اقلیدس

این مطلب توسط کاربر گرامی آقای جواد صدقی مقدم در صفحه همکاری با ما ارسال گردیده است و مورد تائید رایشمند می باشد بدین وسیله از ایشان تشکر نموده و 5 امتیاز مثبت در...

اصل پنجم اقلیدس...هندسه
اصل پنجم اقلیدس اقلیدس در کتاب اصول اقلیدس هنگامی که بنیاد هندسه‌یی را می‌گذاشت، که به مدت بیش از دو هزار سال تنها هندسه‌ی موجود بود، پنج اصل موضوع و پنج اصل متعارفی را به عنوان اصول بدیهی و بدون نیاز به اثبات پذیرفت تا بتواند بقیه قضایای هندسی را اثبات کند. اصل پنجم آن‌گونه که اقلیدس بیان کرد این‌گونه است: اگر دو خط راست بوسیله‌ی یک خط سوم قطع شوند، در همان طرفی از خط سوم که زوایای داخلی، مجموع کوچکتر از دوقائمه تشکیل می‌دهند یک‌دیگر را قطع می‌کنند. این اصل در شکل امروزی آن اینگونه بیان می‌شود: اگر دو خط به وسیله‌ی موربی چنان قطع شوند که مجموع اندازه‌ی درجه‌های دو زاویه‌ی درونی واقع در یک طرف مورب کمتر از 180 درجه باشد، آنگاه این دو خط یک‌دیگر را در همان طرف مورب تلاقی می‌کنند. شکل مشهورتر این اصل که امروزه در دبیرستان تدریس می‌شود و به اصل توازی اقلیدسی مشهور است عبارت است از: به ازای هر خط l و نقطه‌ی p غیر واقع بر آن تنها یک خط مانند m وجود دارد چنانچه از p می‌گذرد و با l موازی است. این اصل را به این شکل نخستین بار جیرولامو ساکری طرح کرد. چند جانشین دیگر برای این اصل پیشنهاد شده است: حداقل یک مثلث وجود دارد که مجموع سه زاویه‌ی آن برابر با 180 درجه است. دو مثلث متشابه غیر متساوی وجود دارند. دو خط مستقیم وجود دارند که همه جا از هم به یک فاصله‌اند. بر هر سه نقطه‌ی غیر واقع بر یک خط می‌توان دایره‌ای گذراند. بر هر نقطه‌ی داخل زاویه‌ای کمتر از 60 درجه می‌توان خط مستقیمی کشید که هر دو ضلع زاویه را قطع کند

مرتضی
نوشته شده در: 1393/04/06 11:13:37 ق.ظ

با تشکر از آقای صدقی مقدم برای ارسال این مطلب مفید

سبحان ثمره راد
نوشته شده در: 1394/01/17 10:41:30 ب.ظ

با تشکر

شما در پاسخ به

نظر شما اضافه شد، اما ابتدا باید تایید شود.

نظر خود را برای ما بنویسید
لطفا نام خود را وارد کنید
لطفا آدرس ایمیل خود را وارد کنید لطفا آدرس ایمیل معتبر وارد کنید
لطفا یک نظری بنویسید
ثبت و ارسال