سخنی از بزرگان...

فیلتر:

مرتب سازی بر اساس:

فیلتر بر اساس دسته‌ها

  • Expand/Collapse
    • Expand/Collapse

اثبات تساوی دو انتگرال

سوال: 

در مقاله ای مطالعه می کردم که نوشته بود با یک تغییر متغیر خواهیم داشت: \(\int_{0}^{\infty} \frac{dx}{1 + x^2} = 2 \int_0^1 \frac{dx}{1 + x^2}\)

من سعی کردم این مسئله را با تغییر متغیر \(t = 1 + \frac{1}{x}\) حل کنم ولی به مشکل خوردم، مخصوصا با این قضیه مشکل پیدا کردم که کران پایین صفر نمی شود.

پاسخ: 

با جایگزاری \(u=\frac{1}{x}\) خواهیم داشت \(\int_1^\infty \frac{dx}{1+x^2} = \int_0^1 \frac{u^{-2}}{1+u^{-2}}du=\int_0^1 \frac{du}{1+u^2}\)

که نتیجه می دهد: 

\(\int_0^\infty \frac{dx}{1+x^2} = \int_0^1 \frac{dx}{1+x^2} + \int_1^\infty \frac{dx}{1+x^2} = 2\int_0^1 \frac{dx}{1+x^2}\)

 

 

 
پرینت
5382 رتبه بندی این مطلب:
2.7
برای دادن نظر لطفا وارد شوید و یا ثبت نام کنید