گاهی اوقات در صف نوبت خود را به دیگران بده. اچ جکسون براون (کتاب نکته‌های کوچک زندگی)

دانلود فرمول نظریه مجموعه ها

در این قسمت و در راستای انتشار فرمول های ریاضی در رایشمند، فرمول های مربوط به مجموعه ها، شامل اجتماع، اشتراک، متمم، قانون دمورگان و ترکیبی از اعمال موجود در مجموعه ها را قرار می دهیم

تعاریف

مجموعه تهی: 

مجموعه مرجع (مجموعه جهانی): \(I\)

اجتماع دو مجموعه:

\(A \cup B = \left\{x : x \in A ~~ or ~~ x \in B \right\}\)

اشتراک دو مجموعه: 

\(A \cap B = \left\{x : x \in A ~~ and ~~ x \in B \right\}\)

متمم:

\(A' = \left\{ x \in I : x \not \in A \right\}\)

اختلاف مجموعه ها:

\(A \setminus B = \left\{x : x \in A ~~ and ~~ x \not \in B \right\}\)

ضرب دکارتی:

\(A \times B = \left\{ (x,y) : x \in A ~~ and ~~ y \in B \right\}\)

خواص اشتراک مجموعه ها:

جابجایی:

\(A \cup B = B \cup A\)

شرکت پذیری: 

\(A \cup \left(B \cup C \right) = \left( A \cup B \right) \cup C\)

خودتوانی:

\(A \cup A = A\)

خواص اشتراک مجموعه ها

جابجایی:

\(A \cap B = B \cap A\)

جابجایی:

\(A \cap \left(B \cap C \right) = \left( A \cap B \right) \cap C\)

خودتوانی:

\(A \cap A = A\)

خواص مجموعه ها، در اجتماع و اشتراک

توزیع پذیری: 

\(A \cup \left(B \cap C \right) = \left(A \cup B \right) \cap \left(A \cup C \right)\)

\(A \cap \left(B \cup C \right) = \left(A \cap B \right) \cup \left(A \cap C \right)\)

تسلط:

\(A \cap \varnothing = \varnothing\)

\(A \cup I = I\)

همانی:

\(A \cup \varnothing = A\)

\(A \cap I = A\)

فرمول های مجموعه ها شامل روابط اجتماع، اشتراک و متمم

متمم در اجتماع و اش راک

\(A \cup A' = I\)

\(A \cap A' = \varnothing\)

قوانین دمورگان:

\(\left( A \cup B \right)' = A' \cap B~'\)

\(\left(A \cap B \right)' = A' \cup B~'\)

فرمول مجموعه های شامل کسر

\(B \setminus A = B \setminus \left( A \cup B \right)\)

\(B \setminus A = B \cap A'\)

\(A \setminus A = \varnothing\)

\(\left(A \setminus B \right) \cap C = \left(A \cap C \right) \setminus \left(B \cap C \right)\)

\(A' = I \setminus A\)


اگر به نظرتان فرمولی از قلم افتاده، به رایشمند یادآوری نمایید

این مقاله در تاریخ 95/02/13 به دلیل رفع ایرادی که در قسمت نظرات اشاره شده بود به‌روز‌رسانی شد

تاریخ جدیدترین بروزرسانی: دوشنبه 15 آبان 1396 تاریخ درج در سایت: شنبه 13 اردیبهشت 1393 تعداد بازدید: 18574 تعداد نظرات: 7
  • رتبه بندی این مطلب:
    3/3

7 نظر در مطلب "فرمول نظریه مجموعه ها" ثبت شده است

14
3

حسین

سلام به نظر من قسمت همانی A∪∅=∅ جواب مجموعه آ میشه نه تهی


3
2

ali

B∖A=B∖(A∪B)

&

A∪∅=∅

eshtebah hastan


3
1

nadia

عالیه ممنون


0
1

لاله

یک مجموعه ۲+nعضوی چند برابر یک مجموعه۱_nعضوی زیر مجموعه دارد؟؟؟

😕😕😕😕😕😕😕😕😕😕😕😕😕😕😕😕😕😕😕😕


1
0

عادل آخکندی

8 برابر


0
0

یوسف

۸


3
0

مهدی پرنا

سلام

در چند زیر مجموعه از اعداد طبیعی یک رقمی حداقل یک عدد اول وجود دارد؟؟ اگه با فرمول بگید ممنون میشم

نوشتن یک نظر

افزودن نظر
دی ان ان