خدا عقل را به انسانی نداد جز آن كه روزی او را با كمك عقل نجات بخشید. امام علی (ع)

فرمول های توابع هیپربولیک

توابع هیپربولیک از مسائل مهم در ریاضیات و مثلثات می باشند که در ادامه فرمول هایی از آن قرار می دهیم. 

تعریف توابع هیپربولیک

\(\sinh x=\frac{e^x - e^{-x}}{2}\)

\(\cosh x=\frac{e^x + e^{-x}}{2}\)

\(\tanh x=\frac{e^x - e^{-x}}{e^x + e^{-x}} =\frac{\sinh x}{\cosh x}\)

\(\mathrm{csch}\,x=\frac{2}{e^x - e^{-x}} = \frac{1}{\sinh x}\)

\(\mathrm{sech}\,x=\frac{2}{e^x + e^{-x}} = \frac{1}{\cosh x}\)

\(\coth\,x=\frac{e^x + e^{-x}}{e^x - e^{-x}} = \frac{\cosh x}{\sinh x}\)

مشتق توابع هیپربولیک

\(\frac{d}{dx}\, \sinh x = \cosh x\)

\(\frac{d}{dx}\, \cosh x = \sinh x\)

\(\frac{d}{dx}\, \tanh x = \mathrm{sech}^2x\)

\(\frac{d}{dx}\, \mathrm{csch}\,x = -\mathrm{csch}\,x\cdot \coth x\)

\(\frac{d}{dx}\, \mathrm{sech}\,x = -\mathrm{sech}\,x\cdot \tanh x\)

\(\frac{d}{dx}\,\coth x = -\mathrm{csch}^2x\)

روابط هیپربولیک

\(\cosh^2x - \sinh^2x = 1\)

\(\tanh^2x + \mathrm{sech}^2x = 1\)

\(\coth^2x - \mathrm{csch}^2x = 1\)

\(\sinh(x \pm y) = \sinh x \cdot \cosh y \pm \cosh x\cdot \sinh y\)

\(\cosh(x \pm y) = \cosh x \cdot \cosh y \pm \sinh x \cdot \sinh y\)

\(\sinh(2\cdot x) = 2 \cdot \sinh x \cdot \cosh x\)

\(\cosh(2\cdot x) = \cosh^2x + \sinh^2x\)

\(\sinh^2x = \frac{-1 + \cosh 2x}{2}\)

\(\cosh^2x = \frac{1 + \cosh 2x}{2}\)

معکوس توابع هیپربولیک

\(\sinh^{-1}x=\ln \left(x+\sqrt{x^2 + 1}\right), ~~ x \in (-\infty, \infty)\)

\(\cosh^{-1}x=\ln\left(x+\sqrt{x^2 - 1}\right), ~~ x \in [1, \infty)\)

\(\tanh^{-1}x=\frac{1}{2} \ln\left(\frac{1 + x}{1 -x}\right), ~~ x \in (-1, 1)\)

\(\coth^{-1}x=\frac{1}{2}\,\ln\left(\frac{x + 1}{x-1}\right), ~~ x \in (-\infty, -1) \cup (1, \infty)\)

\(\mathrm{sech}^{-1}x=\ln\left(\frac{1 + \sqrt{1-x^2}}{x}\right), ~~ x \in (0, 1]\)

\(\mathrm{csch}^{-1}x = \ln\left(\frac{1}{x} + \frac{\sqrt{1-x^2}}{|x|}\right), ~~ x \in (-\infty, 0) \cup (0,\infty)\)

مشتق توابع معکوس هیپربولیک

\(\frac{d}{dx}\,\sinh^{-1}x= \frac{1}{\sqrt{x^2+1}}\)

\(\frac{d}{dx}\, \cosh^{-1}x=\frac{1}{\sqrt{x^2-1}}\)

\(\frac{d}{dx}\,tanh^{-1}x=\frac{1}{1-x^2}\)

\(\frac{d}{dx}\, \mathrm{csch}^{-1}x=-\frac{1}{|x|\sqrt{1 + x^2}}\)

\(\frac{d}{dx}\,\coth^{-1}x=\frac{1}{1-x^2}\)

Print
64242 رتبه بندی این مطلب:
3/8

SuperUser AccountSuperUser Account

سایر نوشته ها توسط SuperUser Account
تماس با نویسنده

16 نظر در مطلب "فرمول های توابع هیپربولیک" ثبت شده است

44
7

سحر

عاااالی بود مرسی واقعا


9
0

آرمان

کل امروزمو توی این صفحه بودم و از تمام اینا استفاده کردم ولی اخرش به نتیجه رسیدم.

ممنونم ازتون


4
2

مدیر ارشد سایت

خیلی خوبه و من خیلی خوشحالم


0
0

سید علی احمد

خیلی عالی بود ممنون از شما


0
2

محمدحسين

عااااااااااالي بود مرسي


2
0

منا

ممنون، عالی بود


2
0

zahra

وای خیلیم عالی


1
0

ساناز

ممنون خیلی نیاز داشتم


6
0

مایاد

با سلام

ممنون از اطلاعات خوبتون که به اشتراک گذاشتید. پیشنهاد می کنم روابط مختلط هذلولی رو هم اضافه بفرمایید. متشکرم

sinh (ix) = i sinh x

cosh (ix) = cos x و ...


3
1

ابوالفضل میرزاجانی

سلام حدود دو ساعت سایت شما بودم وخوب استفاده کردم چون نمیشد دانلود کرد یاد داشت برداشتم


0
0

مدیر ارشد سایت

خدا رو شکر که گره از مشکلی باز شده


1
0

طوبا

سلام، میشه بسط سینوس هیپربولیک رو هم بذارین؟

ممنون


0
0

محسن

سلام خیلی خوب بود واقعا

کاش روابط sin,cosوtan,cot

هم بزارین


1
0

sahel aram

ممنونم از شما....


1
0

امیر

خیلی خوب بود ممنون از شما


0
0

الی

واقعا مرسی

نوشتن یک نظر

افزودن نظر

x
دی ان ان