تا نابودی جهان هستی چقدر زمان باقی است؟

آموزش - کارشناسی, جبر سه

جلسه اول جبر سه

این سری های آموزشی طبق کتاب گامهایی در جبر جابجایی رودنی شارپ قرار داده می شود. که به عنوان جبر 3 در اکثر دانشگاه های کشور تدریس می گردد.

*در سرتاسر این بخش R یک حلقه جابجایی در نظر گرفته می شود*

نظریه مدول ها

تعریف: فرض کنیم M یک گروه جمعی آبلی باشد و R حلقه ای جابجایی باشد در این صورت M را یک R-مدول می نامیم هر گاه یک ضرب اسکالر از عناصر M بصورت زیر تعریف شده باشد. 

\(.:R\times M \to M \\(r,m)=r.m\)

به طوری که به ازای هر \(r,r_1,r_2 \in R\) و \(m,m_1,m_2 \in M\) داشته باشیم:

  1. \(r(m_1+m_2)=rm_1+rm_2\)
  2. \((r_1+r_2)m=r_1m+r_2m\)
  3. \((r_1r_2)m=r_1(r_2m)\)

    و اگر R یکدار باشد و \(1_R.m=m\) آن گاه M را یک R-مدول یکانی می نامیم.

    نکته: اگر R یک حلقه تقسیم باشد (مخصوصا یک میدان باشد) آنگاه M را یک فضای برداری روی R می نامیم. (میدان لزوما جابجایی است و هر عضو آن وارون ضربی دارد ولی حلقه تقسیم لزوما جابجایی نیست)

    مثال: \(\mathbb{R}\) یک \(\mathbb{R}\)-مدول است.

    حل: ضرب اسکالر زیر را در نظر می گیریم

    \(\mathbb{R} \times \mathbb{R} \to \mathbb{R} \\ r.s=rs\)

    چون در حالت کلی هر حلقه یک گروه جمعی آبلی است لذا شرط اول برقرار است و برقراری خواص دیگر نیز براحتی نتیجه می شوند پس 

    \(\mathbb{R}\) یک \(\mathbb{R}\)-مدول است.
    یادآوری: 
    \(I\trianglelefteq R \iff \left\{ \begin{array}{l \|l} I \ne \varnothing\\ \forall a,b \in I ; a-b\in I \\ \forall a\in I , r \in R; ra\in I \end{array} \right.\)
    مثال: فرض کنید \(I\) ایده آلی از R باشد در این صورت با ضرب اسکالر
     \(R\times {R\over I} \to {R\over I}\\ r(s+I)=rs+I\)
    اولا \({R\over I}\) یک گروه جمعی آبلی است. 
    دوما خوش تعریف است زیرا: 
    \((r,s+I)=(r^\prime,s^\prime+I) \implies \left\{ \begin{array}{l l} r=r^\prime\\ s+I = s^\prime +I \to s-s^\prime\in I \end{array} \right. \\ \implies r(s-s^\prime)\in I \implies rs-rs^\prime\in I \to rs-r^\prime s^\prime \in I\\ \implies rs+I=r^\prime s^\prime +I\)
    \({R\over I}\) یک R-مدول است زیرا 
    1. \(r[(s+I)+(s ^\prime +I)]=r[s+s^\prime+I]=r(s+s ^\prime)+I\\=rs+rs^\prime+I=rs+I+rs^\prime+I=r(s+I)+r(s^\prime+I)\)
    2. \((r+r^\prime)(s+I)=r(s+I)+r^\prime (s+I)\)
    3. \((rr^\prime)(s+I)=r(r^\prime(s+I))\)

    ملاحظه: اگر v یک فضای برداری روی F باشد در این صورت 

    \(\text{if} \ \ c\in f , \alpha \in v , c\alpha =0 \to c=0 \quad \text{or} \quad \alpha=0\)

    زیرا اگر \(c\ne 0\) داریم: 

    \(c\alpha=0 \implies c^{-1}(c\alpha)=(c^{-1}c)\alpha=0 \implies \alpha =0\)

    و اگر \(\alpha \ne0\) داریم:

    \(c\alpha=0 \implies c(\alpha \alpha^{-1})=0 \implies c =0\)

    اما این موضوع در مدول ها ممکن است برقرار نباشد. 

    بعنوان مثال میدانیم \(6 \mathbb{Z}\) ایده آلی از \(\mathbb{Z}\) است پس بنابر مثال قبل \(\mathbb{Z} \over 6\mathbb{Z}\) یک \(\mathbb{Z}\) مدول است ( پس هر \(\mathbb{Z}_n\) یک \(\mathbb{Z}\)-مدول است) داریم: 

    \(0 \ne 2 \in \mathbb{Z} \quad 0 \ne3+6\mathbb{Z} \in {\mathbb{Z} \over 6\mathbb{Z}} \\ 2.(3+6\mathbb{Z})=2 \times 3+6\mathbb{Z}=6+6\mathbb{Z}=0\)

    تعریف: فرض کنید R و S حلقه های جابجایی باشند در این صورت S را یک R-جبر می نامیم هر گاه یک همریختی حلقه ای مانند \(f:R\to S\) وجود داشته باشد. 

    نکته: \(a+H =0 \iff a\in H \quad , \quad 0_{R\over I}=I\)

    مثال: اگر S یک R-جبر باشد آنگاه می توان S را به عنوان یک R-مدول در نظر گرفت

    حل: چون S یک R-جبر است لذا یک همریختی حلقه ای مانند \(f:R\to S\) موجود است ضرب اسکالر زیر را در نظر می گیریم:

    \(.:R\times S \to S \\ r.s =f(r).s\)

    چون S حلقه است لذا گروه جمعی آبلی است. داریم 

    \(\forall r,r_1,r_2 \in R \quad , s,s_1, s_2 \in S\\ 1) \ r(s_1+s_2)=f(r). (s_1+s_2)=f(r). s_1+f(r). s_2=rs_1+rs_2\\ 2) \ (r_1+r_2)s=f(r_1+r_2) s \stackrel{\text{Hom}}{=} (f(r_1)+f(r_2)) s= f(r_1)s+f(r_2)s\\ r_1s+r_2s\\ 3) \ (r_1r_2)s=f(r_1r_2)s \stackrel{\text{Hom}}{=} (f(r_1)f(r_2)) s= f(r_1)(f(r_2)s)\\ r_1(f(r_2)s)=r_1(r_2s)\\\)

    همچنین اگر R یکدار باشد داریم 

    \(1_R\times S=f(1_R).s=1_R.s=s\)

    چرا که اگر f یک همریختی باشد آنگاه \(f(c)=c\)

    پس S یک R-مدول یکانی است.

شما در پاسخ به

نظر شما اضافه شد، اما ابتدا باید تایید شود.

نظر خود را برای ما بنویسید
لطفا نام خود را وارد کنید
لطفا آدرس ایمیل خود را وارد کنید لطفا آدرس ایمیل معتبر وارد کنید
لطفا یک نظری بنویسید
ثبت و ارسال