تا نابودی جهان هستی چقدر زمان باقی است؟

ریاضی, آموزش ریاضی, آموزش - کارشناسی

سوالی در مورد انتگرال

یک پرسش همراه پاسخ در سایت قرار داده می شود

سوال: اگر \(f(x)\) و \(g(x)\) در \([a,b]\) انتگرال پذیر باشد. آیا می توانیم بگوییم \(f(x)g(x)\) در \([a,b]\) انتگرال پذیر است. منظور از انتگرال انتگرال ریمان است.

جواب: توجه داشته باشید که حاصل ضرب توابع کراندار، کراندار است؛ لذا اگر f و g توابع انتگرال پذیر ریمان باشند، fg نیز کراندار است. بعلاوه اگر f و g در x پیوسته باشند، fg نیز چنین خواهد بود. بنابراین شمول زیر را داریم: 

\(\{x : fg \text{ is not continuous at } x\} \subseteq \{x : f \text{ not continuous}\} \cup \{x : g \text{ not continuous}\}\)

چون f انتگرال پذیر ریمان است، مجموعه ناپیوستگی آن دارای اندازه لبگ صفر است. (یعنی می تواند عدد باشد). حکم مشابهی نیز برای g برقرار است لذا اشتراک از اندازه صفر است. 

بنابراین fg کراندار است و مجموعه ناپیوستگی آن به اندازه کافی کوچک است، لذا fg انتگرال پذیر ریمان است. 

شما در پاسخ به

نظر شما اضافه شد، اما ابتدا باید تایید شود.

نظر خود را برای ما بنویسید
لطفا نام خود را وارد کنید
لطفا آدرس ایمیل خود را وارد کنید لطفا آدرس ایمیل معتبر وارد کنید
لطفا یک نظری بنویسید
ثبت و ارسال