جدول انتگرال ها

انتگرال های پایه ای

xndx=1n+1xn+1,n1
(1)
1xdx=lnx
(2)
udv=uvvdu
(3)
1ax+bdx=1alnax+b
(4)

انتگرال های کسری

1(x+a)2dx=1x+a
(5)
(x+a)ndx=(x+a)n+1n+1,n1
(6)
x(x+a)ndx=(x+a)n+1((n+1)xa)(n+1)(n+2)
(7)
11+x2dx=tan1x
(8)
1a2+x2dx=1atan1xa
(9)
xa2+x2dx=12lna2+x2
(10)
x2a2+x2dx=xatan1xa
(11)
x3a2+x2dx=12x212a2lna2+x2
(12)
1ax2+bx+cdx=24acb2tan12ax+b4acb2
(13)
1(x+a)(x+b)dx=1balna+xb+x, ab
(14)
x(x+a)2dx=aa+x+lna+x
(15)
xax2+bx+cdx=12alnax2+bx+cba4acb2tan12ax+b4acb2
(16)

انتگرال های رادیکالی

xadx=23(xa)32
(17)
1x±adx=2x±a
(18)
1axdx=2ax
(19)
xxadx=2a3(xa)32+25(xa)52, or23x(xa)32415(xa)52, or215(2a+3x)(xa)32
(20)
ax+bdx=(2b3a+2x3)ax+b
(21)
(ax+b)32dx=25a(ax+b)52
(22)
xx±adx=23(x2a)x±a
(23)
xaxdx=x(ax)atan1x(ax)xa
(24)
xa+xdx=x(a+x)aln[x+x+a]
(25)
xax+bdx=215a2(2b2+abx+3a2x2)ax+b
(26)
x(ax+b)dx=14a32[(2ax+b)ax(ax+b)b2lnax+a(ax+b)]
(27)
x3(ax+b)dx=[b12ab28a2x+x3]x3(ax+b)+b38a52lnax+a(ax+b)
(28)
x2±a2dx=12xx2±a2±12a2lnx+x2±a2
(29)
a2x2dx=12xa2x2+12a2tan1xa2x2
(30)
xx2±a2dx=13(x2±a2)32
(31)
1x2±a2dx=lnx+x2±a2
(32)
1a2x2dx=sin1xa
(33)
xx2±a2dx=x2±a2
(34)
xa2x2dx=a2x2
(35)
x2x2±a2dx=12xx2±a212a2lnx+x2±a2
(36)
ax2+bx+cdx=b+2ax4aax2+bx+c+4acb28a32ln2ax+b+2a(ax2+bx+c)
(37)
xax2+bx+cdx=148a52(2aax2+bx+c(3b2+2abx+8a(c+ax2))+3(b34abc)lnb+2ax+2aax2+bx+c)
(38)
1ax2+bx+cdx=1aln2ax+b+2a(ax2+bx+c)
(39)
xax2+bx+cdx=1aax2+bx+cb2a32ln2ax+b+2a(ax2+bx+c)
(40)
dx(a2+x2)32=xa2a2+x2
(41)

انتگرا لهای لگاریتمی

lnaxdx=xlnaxx
(42)
xlnxdx=12x2lnxx24
(43)
x2lnxdx=13x3lnxx39
(44)
xnlnxdx=xn+1(lnxn+11(n+1)2),n1
(45)
lnaxxdx=12(lnax)2
(46)
lnxx2dx=1xlnxx
(47)
ln(ax+b)dx=(x+ba)ln(ax+b)x,a0
(48)
ln(x2+a2)dx=xln(x2+a2)+2atan1xa2x
(49)
ln(x2a2)dx=xln(x2a2)+alnx+axa2x
(50)
ln(ax2+bx+c)dx=1a4acb2tan12ax+b4acb22x+(b2a+x)ln(ax2+bx+c)
(51)
xln(ax+b)dx=bx2a14x2+12(x2b2a2)ln(ax+b)
(52)
xln(a2b2x2)dx=12x2+12(x2a2b2)ln(a2b2x2)
(53)
(lnx)2dx=2x2xlnx+x(lnx)2
(54)
(lnx)3dx=6x+x(lnx)33x(lnx)2+6xlnx
(55)
x(lnx)2dx=x24+12x2(lnx)212x2lnx
(56)
x2(lnx)2dx=2x327+13x3(lnx)229x3lnx
(57)

انتگرال های توانی

eaxdx=1aeax
(58)
xeaxdx=1axeax+iπ2a32erf(iax), where erf(x)=2πx0et2dt
(59)
xexdx=(x1)ex
(60)
xeaxdx=(xa1a2)eax
(61)
x2exdx=(x22x+2)ex
(62)
x2eaxdx=(x2a2xa2+2a3)eax
(63)
x3exdx=(x33x2+6x6)ex
(64)
xneaxdx=xneaxanaxn1eaxdx
(65)
xneaxdx=(1)nan+1Γ[1+n,ax], where Γ(a,x)=xta1etdt
(66)
eax2dx=iπ2aerf(ixa)
(67)
eax2dx=π2aerf(xa)
(68)
xeax2dx=12aeax2
(69)
x2eax2dx=14πa3erf(xa)x2aeax2
(70)

انتگرال های مثلثاتی

sinaxdx=1acosax
(71)
sin2axdx=x2sin2ax4a
(72)
sin3axdx=3cosax4a+cos3ax12a
(73)
sinnaxdx=1acosax2F1[12,1n2,32,cos2ax]
(74)
cosaxdx=1asinax
(75)
cos2axdx=x2+sin2ax4a
(76)
cos3axdx=3sinax4a+sin3ax12a
(77)
cospaxdx=1a(1+p)cos1+pax×2F1[1+p2,12,3+p2,cos2ax]
(78)
cosxsinxdx=12sin2x+c1=12cos2x+c2=14cos2x+c3
(79)
cosaxsinbxdx=cos[(ab)x]2(ab)cos[(a+b)x]2(a+b),ab
(80)
sin2axcosbxdx=sin[(2ab)x]4(2ab)+sinbx2bsin[(2a+b)x]4(2a+b)
(81)
sin2xcosxdx=13sin3x
(82)
cos2axsinbxdx=cos[(2ab)x]4(2ab)cosbx2bcos[(2a+b)x]4(2a+b)
(83)
cos2axsinaxdx=13acos3ax
(84)
sin2axcos2bxdx=x4sin2ax8asin[2(ab)x]16(ab)+sin2bx8bsin[2(a+b)x]16(a+b)
(85)
sin2axcos2axdx=x8sin4ax32a
(86)
tanaxdx=1alncosax
(87)
tan2axdx=x+1atanax
(88)
tannaxdx=tann+1axa(1+n)×2F1(n+12,1,n+32,tan2ax)
(89)
tan3axdx=1alncosax+12asec2ax
(90)
secxdx=lnsecx+tanx=2tanh1(tanx2)
(91)
sec2axdx=1atanax
(92)
sec3xdx=12secxtanx+12lnsecx+tanx
(93)
secxtanxdx=secx
(94)
sec2xtanxdx=12sec2x
(95)
secnxtanxdx=1nsecnx,n0
(96)
cscxdx=lntanx2=lncscxcotx+C
(97)
csc2axdx=1acotax
(98)
csc3xdx=12cotxcscx+12lncscxcotx
(99)
cscnxcotxdx=1ncscnx,n0
(100)
secxcscxdx=lntanx
(101)

انتگرال چند جمله ای های مثلثاتی

xcosxdx=cosx+xsinx
(102)
xcosaxdx=1a2cosax+xasinax
(103)
x2cosxdx=2xcosx+(x22)sinx
(104)
x2cosaxdx=2xcosaxa2+a2x22a3sinax
(105)
xncosxdx=12(i)n+1[Γ(n+1,ix)+(1)nΓ(n+1,ix)]
(106)
xncosaxdx=12(ia)1n[(1)nΓ(n+1,iax)Γ(n+1,ixa)]
(107)
xsinxdx=xcosx+sinx
(108)
xsinaxdx=xcosaxa+sinaxa2
(109)
x2sinxdx=(2x2)cosx+2xsinx
(110)
x2sinaxdx=2a2x2a3cosax+2xsinaxa2
(111)
xnsinxdx=12(i)n[Γ(n+1,ix)(1)nΓ(n+1,ix)]
(112)
xcos2xdx=x24+18cos2x+14xsin2x
(113)
xsin2xdx=x2418cos2x14xsin2x
(114)
xtan2xdx=x22+lncosx+xtanx
(115)
xsec2xdx=lncosx+xtanx
(116)

انتگرال های حاصلضرب مثلثات و توابع توانی

exsinxdx=12ex(sinxcosx)
(117)
ebxsinaxdx=1a2+b2ebx(bsinaxacosax)
(118)
excosxdx=12ex(sinx+cosx)
(119)
ebxcosaxdx=1a2+b2ebx(asinax+bcosax)
(120)
xexsinxdx=12ex(cosxxcosx+xsinx)
(121)
xexcosxdx=12ex(xcosxsinx+xsinx)
(122)

انتگرال توابع هیپربولیک

coshaxdx=1asinhax
(123)
eaxcoshbxdx=eaxa2b2[acoshbxbsinhbx]e2ax4a+x2aba=b
(124)
sinhaxdx=1acoshax
(125)
eaxsinhbxdx=eaxa2b2[bcoshbx+asinhbx]e2ax4ax2aba=b
(126)
tanhaxdx=1alncoshax
(127)
eaxtanhbxdx=e(a+2b)x(a+2b)2F1[1+a2b,1,2+a2b,e2bx]1aeax2F1[1,a2b,1+a2b,e2bx]abeax2tan1[eax]aa=b
(128)
cosaxcoshbxdx=1a2+b2[asinaxcoshbx+bcosaxsinhbx]
(129)
cosaxsinhbxdx=1a2+b2[bcosaxcoshbx+asinaxsinhbx]
(130)
sinaxcoshbxdx=1a2+b2[acosaxcoshbx+bsinaxsinhbx]
(131)
sinaxsinhbxdx=1a2+b2[bcoshbxsinaxacosaxsinhbx]
(132)
sinhaxcoshaxdx=14a[2ax+sinh2ax]
(133)
sinhaxcoshbxdx=1b2a2[bcoshbxsinhaxacoshaxsinhbx]
(134)