در این صفحه گروه آموزش را ملاحظه می نمایید. برای مشاهده کلیه مطالب سایت اعم از آموزش ریاضی، اخبار ریاضی، نمونه سوال ریاضی، فرمول های ریاضی، مشاهیر و دانشمندان، رشته های تحصیلی و مطالب دیگر می توانید از لینک زیر استفاده کنید

در صفحه جزئیات مطلب که با کلیک روی لینک زیر راهی آن می شوید می توانید از گروه بندی که در سمت چپ وجود دارد برای دسترسی به کلیه مطالب سایت استفاده کنید

تمام مطالب

جدیدترین آموزش ها

RSS

آموزش

مدیر ارشد سایت

توسیع انتگرال

پرسش و پاسخ

سوال: 

انتگرال زیر را در نظر بگیرید

\(\begin{equation} I(x)=\int^{2}_{0} (1+t) \exp\left(x\cos\left(\frac{\pi(t-1)}{2}\right)\right) dt \end{equation}\)

نشان دهید 

\(\begin{equation} I(x)= 4+ \frac{8}{\pi}x +O(x^{2}) \end{equation}\)

که در آن \(x\rightarrow0\)

من سعی در حل این انتگرال نموده ولی با جملات بسیار بزرگ و ترسناک مواجه می شوم لطفا کمکم کنید!

جواب: 

ابتدا، تغییر متغیر \(t\leftarrow2-t\) نشان می دهد \(I(x)=\int_0^2(3-t)e^{x\,\cos(\pi(t-1)/2)}dt\) و خواهیم داشت

\(\eqalign{I(x)&=2\int_0^2\exp\left(x\cos\frac{\pi(t-1)}{2}\right)dt\cr &=2\sum_{n=0}^\infty\frac{x^n}{n!}\int_0^2\cos^n\left(\frac{\pi(t-1)}{2}\right)dt\cr &=\frac{8}{\pi}\sum_{n=0}^\infty\frac{x^n}{n!}\int_0^{\pi/2}\cos^nu du\cr &= \frac{8}{\pi}\sum_{n=0}^\infty\frac{x^n}{n!}W_n }\)

که \(W_n=\int_0^{\pi/2}\cos^nu du\) انتگرال شناخته شده ویل می باشد. درحالت خاص \(W_0=\frac{\pi}{2}\) و \(W_1 =1\) خواهیم داشت 

\(I(x)=4+\frac{8}{\pi}x+{\cal O}(x^2)\)

منبع: http://math.stackexchange.com/

مطلب قبلی سوالی در مورد انتگرال
مطلب بعدی اثبات تساوی دو انتگرال
چاپ
1852 رتبه بندی این مطلب:
بدون رتبه

مدیر ارشد سایتمدیر ارشد سایت

سایر نوشته ها توسط مدیر ارشد سایت

نوشتن یک نظر

نام:
ایمیل:
نظر:
افزودن نظر