در این صفحه گروه فرمول های ریاضی را ملاحظه می نمایید. برای مشاهده کلیه مطالب سایت اعم از آموزش ریاضی، اخبار ریاضی، نمونه سوال ریاضی، فرمول های ریاضی، مشاهیر و دانشمندان، رشته های تحصیلی و مطالب دیگر می توانید از لینک زیر استفاده کنید

در صفحه جزئیات مطلب که با کلیک روی لینک زیر راهی آن می شوید می توانید از گروه بندی که در سمت چپ وجود دارد برای دسترسی به کلیه مطالب سایت استفاده کنید

تمام مطالب

جدیدترین فرمول ها

فرمول های ریاضی

مدیر ارشد سایت

فرمول نظریه مجموعه ها

در این قسمت و در راستای انتشار فرمول های ریاضی در رایشمند، فرمول های مربوط به مجموعه ها، شامل اجتماع، اشتراک، متمم، قانون دمورگان و ترکیبی از اعمال موجود در مجموعه ها را قرار می دهیم

تعاریف

مجموعه تهی: 

مجموعه مرجع (مجموعه جهانی): \(I\)

اجتماع دو مجموعه:

\(A \cup B = \left\{x : x \in A ~~ or ~~ x \in B \right\}\)

اشتراک دو مجموعه: 

\(A \cap B = \left\{x : x \in A ~~ and ~~ x \in B \right\}\)

متمم:

\(A' = \left\{ x \in I : x \not \in A \right\}\)

اختلاف مجموعه ها:

\(A \setminus B = \left\{x : x \in A ~~ and ~~ x \not \in B \right\}\)

ضرب دکارتی:

\(A \times B = \left\{ (x,y) : x \in A ~~ and ~~ y \in B \right\}\)

خواص اشتراک مجموعه ها:

جابجایی:

\(A \cup B = B \cup A\)

شرکت پذیری: 

\(A \cup \left(B \cup C \right) = \left( A \cup B \right) \cup C\)

خودتوانی:

\(A \cup A = A\)

خواص اشتراک مجموعه ها

جابجایی:

\(A \cap B = B \cap A\)

جابجایی:

\(A \cap \left(B \cap C \right) = \left( A \cap B \right) \cap C\)

خودتوانی:

\(A \cap A = A\)

خواص مجموعه ها، در اجتماع و اشتراک

توزیع پذیری: 

\(A \cup \left(B \cap C \right) = \left(A \cup B \right) \cap \left(A \cup C \right)\)

\(A \cap \left(B \cup C \right) = \left(A \cap B \right) \cup \left(A \cap C \right)\)

تسلط:

\(A \cap \varnothing = \varnothing\)

\(A \cup I = I\)

همانی:

\(A \cup \varnothing = A\)

\(A \cap I = A\)

فرمول های مجموعه ها شامل روابط اجتماع، اشتراک و متمم

متمم در اجتماع و اش راک

\(A \cup A' = I\)

\(A \cap A' = \varnothing\)

قوانین دمورگان:

\(\left( A \cup B \right)' = A' \cap B~'\)

\(\left(A \cap B \right)' = A' \cup B~'\)

فرمول مجموعه های شامل کسر

\(B \setminus A = B \setminus \left( A \cup B \right)\)

\(B \setminus A = B \cap A'\)

\(A \setminus A = \varnothing\)

\(\left(A \setminus B \right) \cap C = \left(A \cap C \right) \setminus \left(B \cap C \right)\)

\(A' = I \setminus A\)


اگر به نظرتان فرمولی از قلم افتاده، به رایشمند یادآوری نمایید

این مقاله در تاریخ 95/02/13 به دلیل رفع ایرادی که در قسمت نظرات اشاره شده بود به‌روز‌رسانی شد

مطلب قبلی فرمول مجموعه های عدد
مطلب بعدی فرمول های توان
چاپ
14114 رتبه بندی این مطلب:
3/0

مدیر ارشد سایتمدیر ارشد سایت

سایر نوشته ها توسط مدیر ارشد سایت

5 نظر در مطلب "فرمول نظریه مجموعه ها" ثبت شده است

12
2

حسین

سلام به نظر من قسمت همانی A∪∅=∅ جواب مجموعه آ میشه نه تهی


3
2

ali

B∖A=B∖(A∪B)

&

A∪∅=∅

eshtebah hastan


2
1

nadia

عالیه ممنون


0
1

لاله

یک مجموعه ۲+nعضوی چند برابر یک مجموعه۱_nعضوی زیر مجموعه دارد؟؟؟

😕😕😕😕😕😕😕😕😕😕😕😕😕😕😕😕😕😕😕😕


0
0

عادل آخکندی

8 برابر

نوشتن یک نظر

نام:
ایمیل:
نظر:
افزودن نظر