در این صفحه گروه فرمول های ریاضی را ملاحظه می نمایید. برای مشاهده کلیه مطالب سایت اعم از آموزش ریاضی، اخبار ریاضی، نمونه سوال ریاضی، فرمول های ریاضی، مشاهیر و دانشمندان، رشته های تحصیلی و مطالب دیگر می توانید از لینک زیر استفاده کنید

در صفحه جزئیات مطلب که با کلیک روی لینک زیر راهی آن می شوید می توانید از گروه بندی که در سمت چپ وجود دارد برای دسترسی به کلیه مطالب سایت استفاده کنید

تمام مطالب

جدیدترین فرمول ها

فرمول های ریاضی

مدیر ارشد سایت

فرمول های توابع هیپربولیک

توابع هیپربولیک از مسائل مهم در ریاضیات و مثلثات می باشند که در ادامه فرمول هایی از آن قرار می دهیم. 

تعریف توابع هیپربولیک

\(\sinh x=\frac{e^x - e^{-x}}{2}\)

\(\cosh x=\frac{e^x + e^{-x}}{2}\)

\(\tanh x=\frac{e^x - e^{-x}}{e^x + e^{-x}} =\frac{\sinh x}{\cosh x}\)

\(\mathrm{csch}\,x=\frac{2}{e^x - e^{-x}} = \frac{1}{\sinh x}\)

\(\mathrm{sech}\,x=\frac{2}{e^x + e^{-x}} = \frac{1}{\cosh x}\)

\(\coth\,x=\frac{e^x + e^{-x}}{e^x - e^{-x}} = \frac{\cosh x}{\sinh x}\)

مشتق توابع هیپربولیک

\(\frac{d}{dx}\, \sinh x = \cosh x\)

\(\frac{d}{dx}\, \cosh x = \sinh x\)

\(\frac{d}{dx}\, \tanh x = \mathrm{sech}^2x\)

\(\frac{d}{dx}\, \mathrm{csch}\,x = -\mathrm{csch}\,x\cdot \coth x\)

\(\frac{d}{dx}\, \mathrm{sech}\,x = -\mathrm{sech}\,x\cdot \tanh x\)

\(\frac{d}{dx}\,\coth x = -\mathrm{csch}^2x\)

روابط هیپربولیک

\(\cosh^2x - \sinh^2x = 1\)

\(\tanh^2x + \mathrm{sech}^2x = 1\)

\(\coth^2x - \mathrm{csch}^2x = 1\)

\(\sinh(x \pm y) = \sinh x \cdot \cosh y \pm \cosh x\cdot \sinh y\)

\(\cosh(x \pm y) = \cosh x \cdot \cosh y \pm \sinh x \cdot \sinh y\)

\(\sinh(2\cdot x) = 2 \cdot \sinh x \cdot \cosh x\)

\(\cosh(2\cdot x) = \cosh^2x + \sinh^2x\)

\(\sinh^2x = \frac{-1 + \cosh 2x}{2}\)

\(\cosh^2x = \frac{1 + \cosh 2x}{2}\)

معکوس توابع هیپربولیک

\(\sinh^{-1}x=\ln \left(x+\sqrt{x^2 + 1}\right), ~~ x \in (-\infty, \infty)\)

\(\cosh^{-1}x=\ln\left(x+\sqrt{x^2 - 1}\right), ~~ x \in [1, \infty)\)

\(\tanh^{-1}x=\frac{1}{2} \ln\left(\frac{1 + x}{1 -x}\right), ~~ x \in (-1, 1)\)

\(\coth^{-1}x=\frac{1}{2}\,\ln\left(\frac{x + 1}{x-1}\right), ~~ x \in (-\infty, -1) \cup (1, \infty)\)

\(\mathrm{sech}^{-1}x=\ln\left(\frac{1 + \sqrt{1-x^2}}{x}\right), ~~ x \in (0, 1]\)

\(\mathrm{csch}^{-1}x = \ln\left(\frac{1}{x} + \frac{\sqrt{1-x^2}}{|x|}\right), ~~ x \in (-\infty, 0) \cup (0,\infty)\)

مشتق توابع معکوس هیپربولیک

\(\frac{d}{dx}\,\sinh^{-1}x= \frac{1}{\sqrt{x^2+1}}\)

\(\frac{d}{dx}\, \cosh^{-1}x=\frac{1}{\sqrt{x^2-1}}\)

\(\frac{d}{dx}\,tanh^{-1}x=\frac{1}{1-x^2}\)

\(\frac{d}{dx}\, \mathrm{csch}^{-1}x=-\frac{1}{|x|\sqrt{1 + x^2}}\)

\(\frac{d}{dx}\,\coth^{-1}x=\frac{1}{1-x^2}\)

 

 

مطلب قبلی فرمول های لگاریتم
مطلب بعدی فرمول های مثلث در دستگاه دوبعدی
چاپ
55400 رتبه بندی این مطلب:
3/6

مدیر ارشد سایتمدیر ارشد سایت

سایر نوشته ها توسط مدیر ارشد سایت

12 نظر در مطلب "فرمول های توابع هیپربولیک" ثبت شده است

39
6

سحر

عاااالی بود مرسی واقعا


3
1

آرمان

کل امروزمو توی این صفحه بودم و از تمام اینا استفاده کردم ولی اخرش به نتیجه رسیدم.

ممنونم ازتون


4
0

مدیر ارشد سایت

خیلی خوبه و من خیلی خوشحالم


0
0

سید علی احمد

خیلی عالی بود ممنون از شما


0
2

محمدحسين

عااااااااااالي بود مرسي


0
0

منا

ممنون، عالی بود


1
0

zahra

وای خیلیم عالی


0
0

ساناز

ممنون خیلی نیاز داشتم


3
0

مایاد

با سلام

ممنون از اطلاعات خوبتون که به اشتراک گذاشتید. پیشنهاد می کنم روابط مختلط هذلولی رو هم اضافه بفرمایید. متشکرم

sinh (ix) = i sinh x

cosh (ix) = cos x و ...


2
1

ابوالفضل میرزاجانی

سلام حدود دو ساعت سایت شما بودم وخوب استفاده کردم چون نمیشد دانلود کرد یاد داشت برداشتم


0
0

مدیر ارشد سایت

خدا رو شکر که گره از مشکلی باز شده


0
0

طوبا

سلام، میشه بسط سینوس هیپربولیک رو هم بذارین؟

ممنون

نوشتن یک نظر

نام:
ایمیل:
نظر:
افزودن نظر