گروه بندی کلیه مطالب

مطالب تخصصی ریاضی در سایت تخصصی رایشمند

مدیر ارشد سایت
/ دسته ها: مشاهیر

آبل

نيلس هنريک آبل (1802-1829) يکي از پيشروترين رياضيدانان قرن نوزدهم و احتمالا بزرگترين نابغه برخواسته از کشورهاي اسکانديناوي است.

آبل همراه با معاصرانش, گاوس و کوشي, يکي از پيشگامان ابداع رياضيات نوين بوده است, که مشخصة آن تأکيد بر اثبات دقيق است. زندگيش آميزة تندي بود از خوشبيني شوخ طبعانه در هنگامي که تحت فشار فقر و گمنامي قرار داشت, و درقبال دستاوردهاي درخشان برجستة فراوانش در عنفوان جواني, متواضع بود و در رويارويي با مرگي زودرس به آرامي تسليم بود. آبل يکي از شش فرزند کشيش فقيري در يکي از روستاهاي نروژ بود. بيش از شانزده سال نداشت که استعداد عظيمش آشکار شد و مورد تشويق يکي از معلمينش قرار گرفت, و چيزي نگذشت که به خواندن و فهميدن کارهاي نيوتن, اويلر, و لاگرانژ پرداخت. وي به عنوان تفسيري در مورد اين تجربه, نکتة زير را بعدها به نظر من اگر کسي بخواهد در رياضي پيشرفت کند, بايد به » : در يکي از يادداشتهاي رياضي خود نوشت هجده سال بيش نداشت که پدرش مرد و خانواده را در تنگدستي .« مطالعة آثار اساتيد و نه شاگردان بپردازد به جاگذاشت. آنها با کمک دوستان و همسايگان امرار معاش مي کردند و با کمک مالي چند تن از استادان, اين پسر توانست در سال ۱۸۲۱ به طريقي وارد دانشگاه اسلو شود. نخستين پژوهشهاي او, که شامل حل مسئلة کلاسيک منحني همزمان به وسيلة معادلة انتگرالي بود, در سال ۱۸۲۳ منتشر شد. اين اولين جواب معادله اي از اين نوع بود, و راهگشايي براي پيشرفت وسيع معادلات انتگرالي در اواخر قرن نوزدهم و اوايل را درقرن بيستم شد. او همچنين ثابت کرد که معادلة درجه پنجم ax^5+bx^4+cx^3+dx^2+ex+f=0 را در حالت کلي نمي توان مانند معادلات درجة پائينتر, برحسب راديکال حل کرد, و بدين ترتيب مسئله اي را حل کرد که رياضيدانان را ۳۰۰ سال گرفتار کرده بود. او اثباتش را به خرج خود در جزوة کوچکي منتشر کرد. در اين رشد علمي, آبل بزودي از نروژ فراتر رفته و تصميم به ديار از فرانسه و آلمان گرفت. با حمايت دوستان و استادانش تقاضايي به دولت داد, که پس از تشريفات و تأخيرهاي متعارف, بورسي براي يک مسافرت طولاني علمي در قارة اروپا دريافت کرد. سال اول مسافرت خود به خارج را بيشتر در برلين گذراند. در آنجا اينخوش شانسي بزرگ را داشت که با رياضيدانان آماتور جوان و پرشوري به نام اگوست لئوپولدکرل, مجلة مشهورش به نام مجلة رياضيات محض و کاربردي برانگيخت. اين اولين مجلة ادواري جهان بود که کاملا به پژوهشهاي رياضي اختصاص داشت. سه جلد اول آن شامل ۲۲ مقاله از آبل بود. مطالعات اولية آبل در رياضيات منحصر به سنت قديم قرن هيجدهم بود که نمونه اش اويلر است. در برلين تحت تأثير مکتب فکري جديدي قرار گرفت که توسط گاوس و کوشي رهبري مي شد, و بيشترين تأکيدش بر استنتاج دقيق بود تا بر محاسبات مشروح. در آن زمان بجز کار عظيم گاوس روي سريهاي فوق هندسي, کمتر اثباتي در آناليز بود که امروزه نيز معتبر به شمار آيد. همان طور که آبل در نامه اي به يکي از دوستانش تشریح می کند: «اگر ساده ترين حالات را کنار بگذاريم, در تمام رياضيات حتي يک سري بينهايت هم نمي توان يافت که مجموع آن دقيقًا تعيين شده باشد. به عبارت ديگر, مهمترين بخشهاي رياضيات فاقد مبنا هستند» در اين دوران وي نتيجة مطالعات کلاسيک خود را در مورد سريهاي دوجمله اي نوشت و در آن نظرية عمومي همگرايي را بنا نهاد و اولين اثبات قانع کننده از صحت بسط اين سري را ارائه کرد. آبل جزوة مربوط به معادلات درجة پنجم خود را, به اميد آنکه به مثابة يک جواز عبور علمي به کار رود, براي گاوس به گوتينگن فرستاده بود. ولي, گاوس به دليلي که روشن نيست بدون آنکه به آن حتي نظري بياندازد آن را کنار گذاشت, زيرا ۳۰ سال بعد, پس از مرگش آن را سربسته در بين اوراقش يافتند. با تأسف براي هر دو نفر, آبل احساس کرد که در مورد او کارشکني شده است, و تصميم گرفت بدون ملاقات با گاوس به پاريس برود. در پاريس با کوشي, لژاندر, ديريکله, و ديگران ملاقات کرد, ولي اين ملاقاتها سرسري بود و او آن طور که مي بايست شناخته نشد. وي در آن زمان چندين مقالة مهم در مجلة کرل منتشر کرده بود ولي فرانسويان کمتر از وجود اين مجلة ادواري مطلع بودند و آبل خجالتير از آن بود که با افراد تازه آشنا راجع به کارهاي خود صحبت کند. اندکي پس از ورودش, اثر برجستة خود را تحت عنوان يادداشتي دربارة يک خاصيت کلي دستة وسيعي از توابع متعالي که آن را شاهکار خود دانست, به پايان رساند. اين اثر شامل کشفي در مورد انتگرال توابع جبري است که امروزه به نام قضية آبل مشهور است, و پايه اي براي نظرية بعديش راجع به انتگرال آبل, و قسمت زيادي ازهندسة جبري به شمار مي رود. گفته مي شود که دهها سال بعد, هر ميت ضاکمن از آبل آنقدر کار به جا مانده است که رياضيدانان را تا ۵۰۰ سال مشغول » : اشاره به اين يادداشت, گفته است ژاکوبي قضية آبل را بزرگترين کشف حساب انتگرال در قرن نوزدهم توصيف کرد. آبل دستنوشتة خود «. کند را به فرهنگستان فرانسه ارائه کرد. وي اميدوار بود که اين اثر بتواند توجه رياضيدانان فرانسه را به او جلب کند, ولي او بيهوده صبر کرد تا کيسه اش خالي شد و مجبور شد به برلين برگردد. جرياني که اتفاق افتاد از اين قرار بود: دستنوشت مزبور براي بررسي به کوشي و لژاندر داده شد, کوشي آن را به خانه برد و در جاي نامربوطي گذاشت و آن را بکلي فراموش کرد و تا سال ۱۸۴۱ اقدام به انتشار اين اثر نشد, و در آن زمان نيز قبل از آن که نمونه هاي چاپي آن خوانده شود گم شد. بالاخره نسخة اصلي مقاله در سال ۱۹۵۲ از فلورانس سردرآورد. آبل در برلين اولين مقالة انقلابي خود را در مورد توابع بيضوي, موضوعي که سالها روي آن کارکرده بود, به پايان رساند, و درحالي که سخت مقروض شده بود به نروژ برگشت. او انتظار داشت در بازگشت, به استادي منصوب شود, ولي بازهم آرزوهايش نقش بر آب شدو با تدريس خصوصي به امرار معاش پرداخت, و مدت کوتاهي نيز به عنوان معلم کمکي در يک مؤسسه گمارده شد. دراين دوران يکسره مشغول کار بود و اغلب اوقات روي نظرية توابع بيضوي که آن را به عنوان عکس انتگرالهاي بيضوي کشف کرده بود, کار مي کرد. اين نظريه بسرعت جاي خود را به عنوان يکي از رشته هاي اصلي آناليز قرن نوزدهم, با کاربردهاي فراواني در نظرية ادعداد, فيزيک رياضي, و هندسة جبري, باز کرد. در اين اثنا, آوازة شهرت آبل به همة مراکز رياضي اروپا رسيد و در رديف بزرگان رياضي جهان قرارگرفت, ولي وي به خاطر گوشه گيريش از اين ماجرا بي خبر ماند. در اوايل سال ۱۸۲۹ مرض سلي که طي مسافرت به آن مبتلا شده بود چنان پيشروي کرد که او را از کارکردن باز داشت, و در بهار همان سال, آبل در سن بيست و شش سالگي درگذشت. کمي پس از مرگش, کرل در يادنامه اي به طعنه نوست که تلاشهاي آبل موفقيت آميز بوده است, و آبل بايد به کرسي رياضي دانشگاه برلين منصوب شود. کرل در مجلة خود آبل را چنين مي ستايد: «تمام آثارش حاوي نشانه هايي از نبوغ و قدرت فکري حيرت انگيز است. مي توان گفت که او مي توانست با قدرتي مقاومت ناپذير از همة موانع بگذرد و به عمق مسئله نفوذ کند... وجه تمايز او خلوص و نجابت ذاتي وي و نيز تواضع کم نظيري بود که ارزش او را به ميزان نبوغ غيرعاديش بالا مي برد.» ولي, رياضيدانان, براي يادآوري مردان بزرگ رياضي روشهاي مختص خود به خود دارند, و با گفتن معادلة انتگرالي آبل, انتگرالها و توابع آبل, گروههاي آبلي, سري آبل , فرمول مجموع جزئي آبل, قضية حد آبل در نظرية سريعاي تواني, و جمع پذيري آبلي از او ياد مي کنند. کمتر کسي است که اسمش به اين همه موضوع و قضيه در رياضيات نوين پيوند خورده باشد و آنچه وي در دوران يک زندگي عادي مي توانست انجام دهد مافوق تصور است.

مطلب قبلی دکتر پرویز شهریاری
مطلب بعدی راه حل های پیوسته و انتگرال پذیر برای مسئله غیرخطی کوشی از مراتب کسری و شرایط غیرلوکال
چاپ
2008 رتبه بندی این مطلب:
بدون رتبه
 

مدیر ارشد سایتمدیر ارشد سایت

سایر نوشته ها توسط مدیر ارشد سایت

نوشتن یک نظر

نام:
ایمیل:
نظر:
افزودن نظر